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Nanofiltration Membrane
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ABSTRACT

The study was concerned primarily with characterization of the NF45 membrane.
Its pure water permeability, the mass transfer coefficient of NaCl, and the mean ra
dius of the membrane pores were determined. Experiments run with five pure dye so-
[utions and an industrial dye pulp solution confirmed the potential of nanofiltration
membrane separation for the treatment of textile dye plant effluent. The effects of
such significant parameters asinitial solution concentration, transmembrane pressure,
and type of dye on two fundamental characteristics of nanofiltration (flux and separa-
tion factor) were studied.

Key Words. Nanofiltration; Membrane; Characterization; Treatment; Dye;
Effluent

INTRODUCTION

Wastewater from the textile industry is characterized by strong color and a
high concentration of organic carbon. In general, the color is not removed by

* To whom correspondence should be addressed. E-mail: Remi_L ebrun@uqtr-ugquebec.ca
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typical wastewater processing. One general method of reducing color is by
ozonation. From the available information, it is evident that ozonation can
achieve high color removal, reduce the level of organic compounds, improve
biodegradability, destroy phenols, and insure disinfection. One of drawbacks
of ozonation is cost (1). Moreover, even high doses of ozone do not com-
pletely convert the organics to carbon dioxide and water, particularly for dye
wastes containing surfactants and suspended matter (2).

Membrane techniques, characterized by their ability to clarify, concentrate,
and continuously separate, are potentially interesting for effluent treatment
through recycling. In the last few years, the treatment of industrial waste ef-
fluents by membrane processes has gained more and more interest because of
technical, economical, and political reasons. Technically, the basic techno-
logy of process engineering has been devel oped; Economically, the shortage
of water and the increasing cost of auxiliary chemicals and energy have
pushed this technology; Politically, the increasing interest of government and
people to environmental problems has forced industries to observe severe en-
vironmentally safe procedures (3).

The performance of microfiltration depends on the composition of the
waste, which can be improved by the addition of ionic micelles (4). Ultrafil-
tration (UF) can remove some of the dyes from a waste feed solution, the se-
paration depends on the solution proprieties and the UF unit operating param-
eters (5). Membrane filtration coupled with ozonation of the retentate was
used for the treatment of colored textile wastewater. A selected membrane fil-
tration process generates a permeate with over 99% of the color and copper re-
moved, while 85% of salts by mass and 85% of the original water were
reusable (6). Nanofiltration, a membrane process located between ultrafiltra-
tion and reverse osmosis, combines the advantages of ultrafiltration by using
moderate pressure and those of reverse osmosis by separating solutions,
makes it possible to recover 97-99% of the water from some effluent stream,
with sufficient quality to recycle the permeate into the dyeing process. The
am of introducing membrane filtration is not only to reduce the water and
wastewater streams, but also to minimize the consumption of dyeing process
chemicalsand to save energy. Many effluent streams are hot, and they are cur-
rently led to drain. Recycling such streams will reduce the energy consumed
by using them to heat fresh water (7).

This study was concerned primarily with characterization of the NF45
membrane. We investigated the potential of a nanofiltration membranefor the
treatment of textile dye plant effluent by experiments run with five pure dye
solutions and an industrial dye pulp solution. The effects of such significant
parameters as initial solution concentration, transmembrane pressure, and
type of dye on two fundamental characteristics of nanofiltration (flux and se-
paration factor) were also studied.
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MATERIAL AND METHODS

The NF45 membrane, manufactured by Filmtec, was selected from achoice
of three types of nanofiltration membranes. It is a hydrophilic membrane with
pore diameters between 2 and 5 nm. It displays an isoelectric point of 6.5 (8)
and henceiselectrically positivefor pH valueslower than 6.5 and negative for
pH values greater than 6.5.

The experimental apparatusis a simple closed circuit. The system schema,
shown in Fig. 1, comprises three essential sections:

» Supply: Prior to entering the filtration modules, the solution is prefiltered
by a 5-um filter. It is circulated via a diaphragm pump equipped with a
pulse shock absorber.

» Nanofiltration: Four flat nanofiltration modules have been installed in se-
ries, each module having a membrane surface of 14.2 X 104 m?.

* Measurement: The permeate flow from each module is determined by
weight. The concentration of the circulation solution and the permeate are
determined either by a conductometer for the NaCl solution or by avisible
UV spectrophotometer for the dye solutions. In all cases, the parameter
(conductivity or transmittance factor) is calibrated according to the con-
centration beforehand.

?
|
g5
permeate q_f
=)
2
E
1- Pyrex 101 Vessel 2- Pre-filter, 5 pm 3-Diaphragm Pump Su
4- Thermocouple and analog thermometer 5- Pressure Gauge S
6- Filtration modules in series 7- Flow meter 8- Valve TEQ
o
8

FIG.1 Schematic representation of the experimental nanofiltration apparatus.
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Experimental studies were run in two stages: a membrane characterization
phase and a nanofiltration phase for dye effluent treatment.

Membrane Characterization

This phase involved measurement of membrane permeability, determina-
tion of mass transfer coefficient, and evaluation of membrane pore size.

The nanofiltration process is characterized by both the permeate flow and
the separation factor. The global separation factor and the intrinsic separation
factor are defined respectively by the following expressions:

Global separation factor

f = (Cb - Cp)/Cb =1- Cp/Cb (1)
Intrinsic separation factor
J"=(Cw = Cp)ICy = 1 = G,/Cy 2

where Cy, Cy, and C, are the molar concentration of feed solution, concen-
trated boundary solution, and permeate sol ution, respectively (mol/m?d).

Measurement of Permeability

Tests were run using pure water under varying pressures to measure mem-
brane permeability. The system was operated with demineralized water at a
pressure 20% greater than the maximum operating pressure for 1 hour in or-
der to compact the membrane. Membrane permeability is determined by

A = Ju/AP (©)

where A, = pure water permeability of membrane (m)
J = permeate flux (m/s)
AP = transmembrane pressure (Pa)
. = viscosity of water (Pa:s)

Determination of Mass Transfer Coefficient

Experiments were run using salt water to measure the mass transfer coeffi-
cient of NaCl. A saline solution wasintroduced into the system. After each ex-
periment, the system was flushed with a solution of 2% Ultrasil 10, followed
by flushing with demineralized water.

Taking into account the diffusive retroflux due to osmotic pressure from the
concentration difference on either side of the membrane, and by ignoring the
resistance of the boundary layer, Eqg. (3) is modified as follows (9):

J=A[AP — (C,) + m(Cp)l/n (4)

MaRcEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016
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Therefore:
w(Cw) = AP — pJIA + m(Cp) (5)
On the other hand, the osmotic pressure for a dilute ionized solution can be
calculated according to van't Hoff’ s equation:
m(C) = %RTC (6)

where 1(C) = osmotic pressure of a solution with molar concentration C
(Pa)
R = perfect gas constant, R = 8.314 (Jmol/K)
T = absolute temperature (K)
2., = number of ions per molecule of solute, 2; = 2 for NaCl

Hence the molar concentration of concentrated boundary solution C,, can
be calculated by

AP — wJ/A
2iRT

Moreover, by running amass balance in the boundary layer (film model), a
formulafor the calculation of the permeate flux can be obtained as follows:

Cw = + Cp (7)

. [(c,-C
J=Kk In(ﬁ) (8
Therefore:
o [Cy—C
k=Jl n(ﬁ) 9

where k is the mass transfer coefficient on the high pressure side of the mem-
brane (m/s).

According to Robinson and Stokes (10), if the viscosity of the solution ap-
proaches that of pure water, the value of the mass transfer coefficient for aso-
lution can be calculated from that for a sodium chloride solution by the fol-
lowing formula:

D y 2/3
Ksolute = Knaci <M> (10)

(DAB)NaCI
where D g isthe diffusivity of solute A in solvent B (m?/s).
Evaluation of Membrane Pore Size

The methods for determining the diameters of active pores which are di-
rectly involved in membrane separation are generally classified in two groups:

MaRcEL DEKKER, INC.
270 Madison Avenue, New York, New York 10016
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» Direct methods of membrane observations such as el ectron microscopy, x-
rays, etc.

* Indirect methods involving the use of one or more fluids, determining
membrane characteristics as a function of membrane behavior vis-avis
these fluids, such as the permeation speed, the retention rate, etc.

This study employed an indirect method based on the surface force—pore
flow model (SFPF) which was developed for ultrafiltration and reverse osmo-
sis transport by Sourirgian and Matsuura (11). Lebrun et al. (12) used this
model to examine the membrane process. In thismodel, the pores on the mem-
brane surface are assumed equivalent to circular cylindrical pores, with or
without pore size distribution; and the solute-membrane material interactions
relative to solvent (water) are expressed in terms of the electrostatic surface
potential function. The transport of solute and solvent through the membrane
pores is governed by such surface forces, together with frictional forces and
solution velocity profiles within the pores. The intrinsic separation factor is
expressed by the following dimensionless expression:

1 1 ex(p)
j b(p) a(p)pdp  (11)

fr=1-"n 0 BP) o
JO ap)pdp 1+ =gy €7 1)

where p = radia dimensionless distance, p = /R,
r = radial distance (m)
R, = effective radius of membrane pores available for fluid flow, R,
= R, — Dy (M)
R, = radius of membrane pores (m)
D,, = water molecule radius, D,, = 0.87 X 10" °m
a(p) = dimensionless solution velocity profile in the pore:

— 2
op) = g (1= 09) (12)
b(p) = frictional force function:

4457 — 416.2\ + 934.9\% + 302.4\°, if0.22< <1

b(p) = _ (13)
(1 — 2.104\ + 2.090\° — 0.95\°) "%, if \ =0.22

\ = steric hindrance of the solute at the interface, A = d/R,
d = steric hindrance parameter of the solute at the interface (m).
For agiven solute, thisis dependent on the chemical nature of

MAaRrcEeL DEkkER, INc.
270 Madison Avenue, New York, New York 10016
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the solvent and the material of the membrane surface; the
value of the Stokes' radius can be used as an approximation
&(p) = dimensionless potential surface function:

R d
* when (E - ) Re
b(p) = (14)
A B d

_ R _
Ro— PRa (R — R Whe”(Ra p>>Ra

I\

A = electrostatic repulsive force constant (m)
B = attractive or repulsive force constant (m?3)

On the one hand, Eq. (11) shows that for a given solution and fixed operat-
ing conditions, the intrinsic separation factor depends only on the membrane
poreradius. On the other hand, the intrinsic separation factor can be calculated
from C,, and C, by Eq. (2). Hence Eq. (11) can be numerically resolved to de-
termine the mean membrane pore radius.

The study by Sourirgan and Matsuura (11) helped clarify the parameters
characterizing some azo dyes in solution, as well as those referring to awide
range of membranes. In the present study, experiments were performed using
Orange Il dye. The parameters for characterizing Orange Il are shown in
Table 1.

Nanofiltration Experiments on the Treatment
of Dying Effluent

Five solutions of pure dye and one of reactive dye pulp were selected for
our study. Thereactive dye pulp (from an industrial effluent) is considered to
be representative of an actual effluent, and the amount of dye in the mixture
is unknown. The circulation flow rateis around 2 X 10~°m3/s and the oper-
ating temperature is around 25°C. The principal characteristics of these dyes
are shown in Table 2. The same protocol used in previous studies was
followed.

TABLE 1
Parameters for Characterizing Orange 11 (11)
Diffusivity Dag (M%) 528 X 10710
Stokes' radiusd (m) 6.56 X 1010
A(m) 34 x10°1°
B (m°) 9875 x 10~

MAaRrcEeL DEkkER, INc.
270 Madison Avenue, New York, New York 10016
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TABLE 2
Principal Characteristics of Five Pure Dyes and a Reactive Dye Pulp

Dyes

Orangell Safranine-o- EosineB  FastBlue Fast Green Pulp

Molar mass

(g/mal) 350.0 350.0 624.1 475.5 808.9 637.4
Solvent Water Water Water Water Water Water + urea
Solubility

(kg/m3) 130 — 50 70 60 —

RESULTS AND DISCUSSION

Water Permeability

Experimental results (Fig. 2) show that the pure water permeability of the
membrane decreases markedly with pressure even though the membrane is
compressed beforehand for 1 hour by a pressure 20% greater than the maxi-
mum operating pressure. The decrease in membrane permeability is probably
due to incomplete membrane compaction, which would suggest that either a
higher compaction pressure or alonger compaction time should be used.

Mass Transfer Coefficient of NaCl

Experiments with NaCl were run at different pressures. Figure 3 shows that
for pressures below 10° Pa, the phenomenon of concentration polarization is

2.0E-14
1.56-14 1 .\‘\
—
"
= !
E o4l 5
- 2
< £
5.0E-15 1 <
=
E
a
0.0E+00 t t t 3
0.0 1.0 20 3.0 4.0 g
©
A P(MPa) !
FIG. 2 Evolution of pure water membrane permeability versus transmembrane pressure.
MAaRrcEeL DEkkER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 5
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6,0E-05

5,0E-05

4,0E-05

3,0E-05

J (m/s)

2,0E-05 -

1,0E-05 | (4 NaCl, 4000ppm

0,0E+00 T . T
0,0 1,0 20 3,0 4,0

AP (MPa)

FIG. 3 Evolution of permeate flux versus transmembrane pressure for NaCl.

not significant. The feed concentration C,, is very closeto the wall concentra-
tion C,, so Eqg. (9) is not appropriate for calculating the value of the mass
transfer coefficient. For pressures above 10° Pa, a mean value of kyac) = 5.8
X 107> m/s was obtained.

Mean Membrane Pore Radius

The nanofiltration of Orange Il dye solution was run under different pres-
sures. The mass transfer coefficient of Orange I1, Korange 11, Can be calculated
from Eq. (10). Since the value of knac isamean valuefor P > 10° Pa, the ob-
tained value of Korange i i aso for P > 10° Pa.

korange|| = Knaci (M)ZB

(DAB)NaCI

_cax 10_5<O.528 X 10—9>23

1.61 X 10~°

= 2.76 X 107> m/s

For Orange |l dye solution, the molar concentration of the concentra-
ted boundary solution can not be calculated by Eq. (7) due to some unknown
properties of the dye solution. However, once the mass transfer coefficient of
Orange |1, Korange 11, has been calculated, the molar concentration of the con-
centrated boundary solution can be deduced from Eq. (9):

Cw = Cp + (Cb - Cp) eXp(J/ korangell) (15)

MAaRrcEeL DEkkER, INc.
270 Madison Avenue, New York, New York 10016
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The concentration polarization rate is defined as the ratio C,,/Cy,. The cal-
culated results show that the concentration polarization rate becomes more
significant as the pressure rises and as the experiment proceeds. Figures 4a-b
display the evolution of C,,/Cy, as afunction of pressure and of time, respec-
tively, during the same experiment.

7,0

6,0 +
50 1

40 1

Cw/Cb

30+
20+

101 Orange II, 100ppm

0,0 t - + -
0,0 1,0 2,0 3,0 40 5,0

AP(MPa)
(a)

12,0

10,0 +

8,0 +

6,0 +

Cw/Cb

40 1

20 Orange II, 100ppm, 4MPa

0,0 } } t
0 40 80 120 160

t(min)

(b)

Copyright © Marcel Dekker, Inc. All rights reserved.
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FIG. 4 Evolution of C,,/Cy, as afunction of pressure or as a function of time. ﬂ
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TABLE 3
Experimental and Calculated Values of the Intrinsic Separation Factor
AP (MPa)
20 3.0 4.0
Experimental f’ (%) 99.64 99.86 99.85
Calculated f' (%) 99.71 99.79 99.82

The mean poreradius of the NF45 membrane, 0.76 nm, was obtained by re-
solving Eq. (11). Theintrinsic separation factors have been recalculated from
the mean pore radius at each pressure level; the results are shown in Table 3.

Application in Dye Effluent Treatment

Figures 5a-b depict the evolution of the four parameters over time during
the nanofiltration of Safranine-o- dye at an initial concentration of 145 ppm.
The permeate flux was observed to remain practically constant over time. The
global separation factor increased with time at the beginning and stabilized
rapidly at around 99.5%. The permeate concentration decreased over time at
the beginning and stabilized at approximately 0.7 ppm, while the circulation
concentration rose gradually over time.

Influence of the Initial Concentration

In nanofiltration membrane separation, concentration certainly playsasig-
nificant role. In general, the higher the concentration, the higher isthe osmotic
pressure, and, consequently, the permeate flux is lower. For Orange Il solu-
tion, Figs. 6a-b show that the permeate flux is always higher at lower solution
concentration. However, the global separation factor is higher at lower solu-
tion concentration only after 60 minutes of operation. On the other hand, for
Safranine-o- solution, Figs. 6¢-d show that the permeate flux and the global
separation factor are all higher as the concentration is higher. The phe-
nomenon can be explained by the significance of the interaction forces. Un-
fortunately, the experimental results can not be fully explained due to insuffi-
cient information on the solution charge.

Influence of Transmembrane Pressure

The influence of transmembrane pressure on permeate flux and on global
separation factor was evaluated for different dyes at a concentration close to
500 ppm. Figures 7a-b show that the effect of pressure on the permeate flux
and on the global separation factor differed, depending on the dye. For Fast

MAaRrcEeL DEkkER, INc.
270 Madison Avenue, New York, New York 10016
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FIG.5 Evolution of four parameters as a function of time for Safranine-o- solution.

Green solution, the permeate flux increased in alinear mode with pressure; the
separation factor reached 99.9% and remained constant. This signifies that
mass transfer isnot alimiting factor asregards operating pressure and the phe-
nomenon of concentration polarization is of little importance. For Orange |1
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and Eosine B solutions, the permeate flux rose more rapidly with pressure at
the beginning and increased more slowly at high pressure. This indicates that
concentration polarization begins to intervene in the range of operating pres-
sure. For Fast Blue solution, the permeate flux fell slightly with pressure at the

8.0E-5
6.0E-5 | /Mw
—_ XXX XXX XXX —x
@ x/‘x/x
g 5 1
g 4.0E-5 e 100ppm
—X— 500ppm
2.0E-5 |
Orange 11, 4MPa
0.0E+0 ; t i
0 40 80 120 160
t (min)
(@
99,5
99,0 +
X
X—x—X"
. W
~ X/x x\x/x\x,_x\x/
X 985 | A
o 3
Y —e— 100ppm g
—X— 500ppm E
98,0 + 2
/ Orange II, 4MPa <
97,5 : : : 2
0 40 80 120 160
t (min) :
(b) 2
S

MAaRrcEeL DEkkER, INc.

FIG. 6 Influence of concentration on the permeate flux and on the global separation factor.
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0.0E+0 } } }
0 40 80 120 160
t (min)
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100,0
/(/xfx\x/x/Xﬂ("X\x—x—x—xAX
9951 %
<
=
ot —e— 145ppm
99,0 4 —X— 370ppm
Safranine-o-, 3MPa
98,5 } f t
0 40 80 120 160
t (min)
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FIG. 6 Continued.

beginning and dropped further with high pressure, which indicates that the
concentration polarization is significant in this case.

The influence of transmembrane pressure on permeate flux and on global
separation factor was also evaluated for the reactive dye pulp of 1000 ppm. ﬂ

Copyright © Marcel Dekker, Inc. All rights reserved.
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FIG. 7 Influence of pressure on the permeate flux and on the global separation factor for dif-
ferent dyes.

Figure 8a shows that the permeate flux is greater when the pressure is higher
in the beginning; however, the permeate flux under higher pressure drops
markedly after a certain period of operation. It appears that concentration po-
larization is affecting the filtration of the reactive dye pulp at this pressure ﬂ

MaRcEL DEKKER, INC.
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FIG. 8 Evolution of permeate flux and global separation factor versus time for reactive dye
pulp.

level. Figure 8b showsthat the global separation factor reaches 98% in the be-
ginning and rapidly risesto 100% for all testing pressures. The difference be-
tween permeate flux and global separation factor behaviors can be explained
by the existence of concentration polarization at higher pressure. ﬂ
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Influence of Dye Types

The behavior of some dyes with similar molar masses was compared. Or-
ange Il and Safranine-o- have a molar mass of 350 g/mol (Table 2). Figures
6a-d show that the effect of initial concentration on the flux and the separation
factor differsfor these two dyes which have similar molar masses.

CONCLUSION

Characterization of the NF45 membrane showed that, even though the
membrane was compressed beforehand by a pressure 20% greater than the
maximum operating pressure for 1 hour, pure water permeability decreases
with increasing transmembrane pressure, which suggests that either a higher
compaction pressure or alonger compaction time should be used. On the other
hand, it showed that the film model is not appropriate for calculating the mass
transfer coefficient when the pressure is low because of the nonexistence of
concentration polarization.

Experiments run with five pure dye solutions and an industria dye pulp solu-
tion confirmed the potential of nanofiltration membrane separation for the treat-
ment of textile dye plant effluent. The global separation factor is greater than
98.5% within the range of dyes studied. The study on the effects of such signifi-
cant parameters as initial solution concentration, transmembrane pressure, and
type of dye on two fundamental characteristics of nancfiltration showed that the
identification of transfer phenomena in dye solutions during nanofiltration is
complex. The definition of the dominant transfer mechanismsin nanofiltrationis
based not only on experimentation but aso on knowledge of the properties of the
solution undergoing treatment and those of the membrane.

NOMENCLATURE

electrostatic repulsive force constant (m)

pure water permeability of membrane (m)

attractive or repulsive electrostatic force constant (mq)
frictional force function

molar concentration of solution (mol/m?3)

feed concentration (mol/mq)

permeate concentration (mol/m?3)

wall concentration (mol/mq)

steric hindrance parameter of the solute at the interface (m)
diffusivity of solute A in solvent B (m?/s)

radius of awater molecule

global separation factor and intrinsic separation factor, respectively
permeate flux (m/s)
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mass transfer coefficient (m/s)

pressure (Pa)

radial distance (m)

perfect gas constant (J/mol/K)

effective radius of membrane pores available for fluid flow (m)
membrane pore radius (m)

absolute temperature (K)

ek Letters

dimensionless solution velocity profile in the pore
gradient

dimensionless potential surface function

radial dimensionless distance

steric hindrance parameter of the solute at the interface
fluid viscosity (Pa-s)

number of ions per molecule of solute

osmotic pressure (Pa)
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